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Equilibrium statistics of a cluster of a large number of positive two-dimen- 
sional point vortices in an infinite region and the associated thermodynamic 
functions, exhibiting negative temperatures, are evaluated analytically and 
numerically from a microcanonical ensemble. Extensive numerical simula- 
tions of vortex motion are performed to verify the predicted equilibrium 
configurations. An application of Kubo's linear response theory is used to 
study the nonequilibrium situation that results from placing a cluster of vor- 
tices in a weak external velocity field, such as that produced by a distant 
vortex cluster. The weak field causes the cluster to grow in size as if there were 
an effective positive eddy viscosity. When a number of clusters interact, the 
effect is for each to grow while the distances between them decrease with 
time. The latter effect is an exhibit of negative viscosity. The application of 
this to the motion of the atmosphere is discussed. 

KEY W O R D S  : Statistical mechanics ; two-dimensional vortices ; negat ive 
temperature ; negative viscosity. 

1 ,  I N T R O D U C T I O N  

In  a number  of papers, (1-5~ as a numerical  scheme, a two-dimensional  incom- 

pressible vorticity field is discretized into vortices each of which is t ransported 
in the velocity field induced by all of  the others. There is another  class of  

problems studied where the discrete nature  of  the vortices is natural .  These 

are the superfluid hel ium states, where discrete " q u a n t i z e d "  vortices appear  

when the fluid is caused to rotate, (6-1~ and in a two-dimensional  magnetized 
plasma, where the mot ion  of " t w o - d i m e n s i o n a l "  electrons and ions in a 
s trong magnetic field is mathematical ly equivalent  to vortex motion/~2-22~ 
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The present paper will be restricted to the statistical mechanics of the 
very simplest case of a large number of vortices of one kind in an infinite 
region. All previous papers of a statistical nature have considered finite 
regions. The restriction to an infinite region is made partly for numerical 
reasons; the equations are simpler without boundaries. The restriction to one 
species of vortex is related to this because vortices of opposite kinds will 
pair up and propagate out to infinity. There can be no equilibrium configura- 
tion with equal numbers of vortices of two kinds in an infinite region. 

The best application would appear to be to the atmosphere, where 
cyclonic vorticity is more dominant than anticyclonic vorticityJ 24~ In a very 
loose model one can view the earth as a plane with the north pole at the 
center and the equator at infinity. The motion in this plane is induced by 
clusters of vortices, which represent cyclones. The effect of Coriolis forces 
could be included here without qualitative difference. 

The paper is organized into three main parts. In the first part (Section 2) 
the equilibrium statistics are worked out giving the distribution of vortices 
in an isolated cluster and the associated thermodynamic functions. The 
average density of vortices is found to be axially symmetric, being more 
peaked at the center, and hence more highly ordered, for states of high 
energy. By the classical definition of entropy and temperature, this gives 
states with negative temperature, which are peculiar in no other way. 

The second part (Section 3) involves direct numerical integration of the 
vortex equations of motion with the intention of verifying the equilibrium 
configurations. It is found that if the system is started in a configuration that 
is not too far from equilibrium, it will evolve in a relatively short time toward 
the equilibrium configuration. However, if the system is started far from 
equilibrium, as, for instance, when the starting state consists of two widely 
separated clusters, the system appears not to tend to equilibrium. The two 
clusters remain intact and continue to orbit each other for as long as com- 
putation is practical. The third part (Section 4) of the paper addresses this 
problem by studying the weak nonequilibrium situation that arises when a 
cluster of vortices is placed in a weak external velocity field, such as that 
produced by a distant cluster of vortices. By using linear response theory, it is 
concluded that two distant orbiting clusters will eventually coalesce. 

The implications for the atmospheric model are that the interacting 
clusters, representing cyclones, will eventually coalesce into a single polar 
equilibrium cluster. In the process, angular momentum flows from the small- 
scale individual clusters into the larger equilibrium cluster. In the atmosphere 
this "inverse angular momentum cascade" compensates for frictional losses 
in the westerly winds. C25~ 

The equations of motion of a system of point vortices express that each 
vortex driftS in the incompressible velocity field produced at its position by 
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the superposition of the velocity fields of each of the other vortices. In an 
infinite region the velocity at the position of the ith vortex due to the j th,  
of  strength F, is ~ X (#/0r~)[F(ln r~j)/27r], perpendicular to the line of centers 
of the two vortices, with magnitude I'/2,rr~j. The equations may be written 
in the form shown by Kirchhoff/26~ 

F dr~ ~ ~F(rl, r2,..., rN), u = 

where 

i = 1, 2 ..... N (1) 

= __ ~ 12 ̀2 lnr~s/l o 
~.,,,>s 2~ ' r~j = Jr, - r s l  (2) 

The parameter lo is an arbitrary length, carried along to keep the argument 
of the logarithm dimensionless. It is easily shown (26~ that the Hamiltonian Jt ~ 
is a constant of the motion, as are ~N=I r~ 2 and ~N= 1 r~. 

The quantity p~ ,  where p is the mass of  the fluid per unit area, is called 
the interaction energy and is the kinetic energy of the fluid minus the "in-  
finite" self-energy of the vortices. In a similar manner, - �89  ~N= 1 r~ 2 iS 
related to the angular momentum of the fluid. 

The third constant shows that the center of vorticity 

1 N 
R = (3)  

. =  

stays fixed. A constant length L, related to the angular momentum relative 
to the center of vorticity, may be defined by 

1 L 2 = ~,__~ (r, - R) 2 (4) 

This constant of motion prevents vortices from diffusing far from the center 
of vorticity. 

2. E Q U I L I B R I U M  S T A T I S T I C A L  M E C H A N I C S  

Let PN(rl, r2 .... , r~; t) denote the probability density for the system of 
vortices, defined such that PN dr1 dr2 ... drN is the probability that rl is in 
dr1, r2 in dr2, etc. A Liouville equation, (27~ expressing conservation of 
probability, may be written 

~PN ~ 1 ( Do~ ~3P N 
~--7- + ,=1 F - ~  X --~-1 "-~r, = 0 (5) 

It is clear that any function of the constants of motion of Eq. (1) is a time- 
independent solution, Eq. (5). It is a basic hypothesis of statistical mechanics 
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that, in an equilibrium situation, PN is a function of the single-valued integrals 
of motion, the isolating integrals, (28~ which are presumably only those already 
mentioned. 

Of the several classical forms taken for this function, the microcanonical 
ensemble 

P~= ~(p~- E) 3(~1 ( r ~ - R )  2 ~ NL 2) 3(~=~r~-  NR) / Q(E,L 2) (6) 

is appropriate here since it represents an ensemble of isolated systems with 
nonfluctuating constants E, L 2, R. This formula expresses the assumption 
that equal areas of the intersection of the hypersurfaces, described by the 
delta functions, are equally likely. It is further assumed, in order for the 
formula to make physical sense, that time averages over states seen by one 
member of the ensemble are the same as ensemble averages (ergodic hy- 
pothesis). (2a~ A sufficient, but not necessary, condition for this to be true is 
that an actual system spend equal times in equal areas of this hypersurface. (29) 

Since f Pu dr1 ... drN = 1, the normalizing factor Q must satisfy 

Q(E, L2)= f 3(p~*~"- E) 3( ~= (r~- R)2- NL2) 3(~ r,- NR) dr~'"dr~ 
(7) 

It is clear that Q does not depend on R, since R may be absorbed by a shift 
of origin in the integral. The function Q is called the "density of states," 
since it is proportional to the area cut out of phase space by the isolating 
integrals. 

In classical thermodynamics, (a~ the entropy of the system is defined by 

S(E, L 2) = k in Q (8) 

and the temperature by 

o r  

1/T = OS(E, L2)/OE (9) 

1/kT = (l/Q) ~Q/OE 
It was first pointed out by Onsager, (12~ for a vortex system similar to this, that 
the entropy as a function of E has a maximum value at some critical value of 
E and that states with E greater than this value possess negative tempera- 
tures, (15~ because they are more ordered states. As E approaches Eor from the 
left, T - +  +oe and jumps to - o e  as Eor is passed. Onsager's argument is for 
a finite phase space; the existence of the additional constant of the motion 
L 2 plays that role here. 
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A hierarchy of reduced probability densities may be defined by 

P~(rl) = f PNdr2...dru, P2(rz,r2)= f PNdr3...drN 

and so on. These reduced densities are related to more physical quantities. 
Let 

N 

n(r) = ~ 3(r - re) (10) 
i=J_ 

be the actual number density of vortices. Then 

N 

(n(r)) = ~ (3(r - r,)) = NPl(r) (11) 
I~=].= 

relates P1 to the average density of vortices. 
The vorticity in this system of vortices is given by 

N 

~o(r) = rn(r) = ~ r 3(r - r,) (12) 

and the velocity may be determined from the stream function ~b by 

v = - ~ •  W,  

where 

( lnlr - r'l w(r') dr' 

Therefore the average vorticity and average velocity 

(w(r)) = NI?P~(r) (13) 

(v(r)) = - ~  ~ • ~ In Ir - r' I P~(r') dr' (14) 

are related to the one-point distribution. 
The average value of the energy and "angular  momentum" are given 

in terms of P2 and/ '1 by 

1 
N) pp2 f In ~ P2(r~, r2) dr1 dr2 (15) E = ( p ~ )  = - ~  (N 2 - 2~- to 

and 

N L  2 = (re - R) 2 = N (rl - R)2P~(rl)dr1 (16) 

that in Eq. (15), P2(r~, r2) may be decomposed as Pl(rl)Pjr~) + Note 
P2'(rl, r2). The first term contributes the part of the interaction energy 
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associated with the mean flow. The second term, then, is the part associated 
with fluctuations from the mean flow, 

Instead of obtaining the thermodynamic functions by evaluating Q from 
Eq. (7) directly, this will be done by calculating the reduced distribution 
functions, in a self-consistent way, and then calculating the energy from 
Eq. (15). 

2.1. Hierarchy of  Equations for the Reduced 
Distr ibution Functions 

Using Eq. (6), P1 is defined by 

Pl(rl) = Q(E, L2) -~ 

x f 3(p.~, ~ - E ) 8 ( ~  (r~ - R) 2 - NL 2) 3 ( ~  r, - NR) dr2 ... drN 

(17) 

Differentiating this function with respect to rz, which occurs in the arguments 
of the delta functions in ~,, ~ (r, - R) 2, and ~ r,, we obtain 

8P~(rl) (N - t)pP 2 ( 8 tn r2z 1 8 
Q t " ~ ( r l  , r2) dr2 8rl = 2~ J 8rl QOE 

1 8 1 8 
- 2(rl - R)-~ ~ Qel(r~) Q OUR Qel(rl) (18) 

The procedure leading to Eq. (18) may be repeated for the two-point distri- 
bution, the three-point distribution, and so on. 

By differentiating the defining relation for Ps(r~ ..... rs), the general result 
may be obtained, 

aPe(r1 ..... r~) 

= [ 2rr = 8r~ -] -Q 8-E QPs 

+ ( N - s ) P P 2  1,1) 1 1) drs+~] 2~ of (~rz ln rs+ ~ QPs+l(r~,..., rs+ 

1 8 1 8 QPs (19) 
- 2(r~ - R) ~ ~ OPs Q 8NR 

Each equation in the hierarchy introduces a distribution function one step 
higher in order into the basic relationship, so that at any level there is always 
one more unknown than the number of equations available. 
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It will be noted that in these equations there are awkward terms like 
(I/Q) OQPd~E. By using Eq. (9) this may be written 

k ~  aP---2 (20) 1 a QPs = Ps + aE 
Q OE 

The second term on the right is difficult. It would not have occurred if the 
derivation had started from the exponential form canonical ensemble instead 
of Eq. (18). It will be shown later that, in fact, the second term is negligible 
compared to the first. 

A formula similar to Eq. (20) may be devised for ( l / Q ) a Q P d a N L  2, 
namely 

1 O QPs 1 OQ oP~ (2l) 
Q aNL 2 = Q ~ P~ + aNL 2 

where 

1 aQ 1 ( 
Q ~NL2 = -~ 1 

To establish Eq. (22), a procedure similar 
of Salzberg and Prager <s2) is used. In Eq. 

e3NP2~ 
+ 8 ~ ]  (22) 

to the equation of state derivation 
(7), defining Q, the change of the 

variable of integration to 0~ = (r~ - R)/L gives 

Q = L=C N-l, f 81 / - \  i.J,zV/>,N' PPZ2rr In p,, - E ' )  8(~. p,z . . . .  N )  8 ( ~  P0 d01 dON 
(23) 

where 

pP 2 N 2 - N L (24) 
E'  = E + 2~r 2- ln lo 

There is no additional dependence on L since the region of integration is 
infinite. From this it is clear that 

l n Q _  a l n Q  = 1 (25) 
aE OE' k T  

and 

l n Q  N -  1 pP 2 N  2 - N O l n Q  (26) 
OL -----T- = ----L -g-- + 2rr 4Z, 2 aE' 

from which Eq. (22) follows. A similar formula for ( l /Q)aQPdOR is un- 
necessary since Q is independent of R. 

Note that by using Eqs. (22) and (25) a form of Gibbs equation may be 
written: 

aS aS , z 
dS = -~-~ dE + -~s dL 

1 d E + k N  1 +  
T [ 87rkT] L 2 (27) 
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2.2. Closure of the One-Po in t  Equation 

It is proposed that Eq. (18) be closed by replacing P2(r~, r2) by Pl(r~)P~(r2). 
This is a common closure in kinetic theory, especially for plasmas. It has 
been used by Montgomery and Joyce (21) in a context similar to this. This 
approximation may be justified by showing that the higher order multipoint 
cumulant distribution functions P j ,  which satisfy equations derived from 
Eq. (19), may be expanded, in a self-consistent manner, in the form P,' = 
O(h/N)S- 1, where 

h = pNr2/8~rkT (28) 

Thus 

P2(r~, r2) - P~(r~)P~(r2) - P2'(r~, r2) = O(A/N) (29) 

is small if A/N is small. The parameter )tiN may be identified as the two- 
dimensional version of the "plasma parameter." (33~ 

It may also be shown that the second terms in Eqs. (20) and (21) are 
negligible if N is sufficiently large, as is also the case for (l/N) ~PI/OR. The 
resulting equation is 

~Pl(rl) 
~r----~ = 4 h f  (~--~lnr2~)P~(r2)Pl(rOdr2 

I + A  
- 2(rl  - R ) ~  Pl(r~)  (30) 

This is to be solved with the normalizing condition f Pl(r~)dr~ = 1. The 
condition given by Eq. (16), which defines L, will then be satisfied auto- 
matically. 

With the change of variables 

Pl(~]) = LZP~(rl), ~q = (rl - R)/L (31) 

Eq. (30) may be written 

i n  - + 

The procedure is to solve this for P~ for each value of the parameter A, which 
is a dimensionless inverse temperature, and to use this to compute the energy 
from Eq. (15), which, with the product form for P2, may be written 

E = pN2F2[~(A) - (1/4zr)ln(L/lo)] 

where 

/~(t) = -~rr  In ~12/~1(~)P1(~2) d~l d~12 (33) 
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is a function of h alone, thus obtaining the thermodynamic functions. To this 
end, Eq. (32) may be integrated once, casting it in the form of an integral 
equation 

~PlOql)= Clexp[-(l + h)~12 + 4A f ln~721"a(~12)d~q21 (34) 

The constant of integration Ca is to be determined from the condition 

Several results follow directly from Eq. (34). If  A = 0, the solution is 
Gaussian, 

P~(~h) = (1/~-) exp(-~a 2) (35) 

For very large ~a, the asymptotic behavior o f / ~  is 

P1 ~ C1 {exp[-(1 + A)~2]}~ ~ (36) 

from which one sees that A /> - 1 is required for the existence of an integrable 
solution. 

An alternate approach is to take the divergence of Eq. (32) using 
V ~ In ~ = 2~r3(~1). This gives 

8 8vl---~'8~1---~ In Pa = 8~A/~z - 4(1 + A) (37) 

or, since Pl must depend only on the magnitude ofvh, the ordinary nonlinear 
differential equation 

d 2 In Pa 1 d In Pa 
d~ 2 + . . . .  4(1 + A) + 87rA exp(lnPa) (38) 

n an 
The results of the numerical integration of this equation are shown in Fig. 1 
for selected values of A. For positive A, which corresponds to positive tem- 
perature, the vortex density Pa is relatively flat near the center. For negative 
A the vortex density is more peaked in the center, getting sharper as A -+ - 1. 

Certain asymptotic results can be obtained analytically. In the limit as 
A --+ oe it is easily seen from Eq. (38) that the solution is 

(39) 
= 0  ~ > ~ / 2  

As A ---> - 1, an approximate solution is 

p l =  A 
( 1  - ~A~2) 2 exp[-(1 + Z)~ 2] (40) 

The first factor is an exact solution of Eq. (38) with the first term on the 
right-hand side neglected. The second factor is a correction for large ~7, in 
agreement with the asymptotic result expressed by Eq. (36). The parameter 
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1.0 

. . . . . . . . . .  s  
B= 2.857 "- 
C=  - . 4 6 3 !  

L a P ( R / L )  D = -,7"19-- 
�9 E ~ = - . s g o  ! 

~ ' D  ', 
0.5 ' , 

- ~ ~C \'~,, \ \ '  .,~ 

0.0 ' ' ' 

o.o 1 .o 2.0 
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Fig. 1. Equilibrium vortex density vs, radial coordinate. The more peaked distributions 
correspond to higher energy levels. 

A tends to infinity as h --+ - 1 and is determined from the conditionf Pz d~- = 1 
by the formula 

rrA + In 7rA = -~, - ln(1 + h), ~, = 0.557 (41) 

which says, essentially, that A grows slowly as )t --~ - 1. 

2.3. The Thermodynamic  Functions 

The relationship between energy and temperature may be obtained by 
substituting the numerical solution for P1 (for each A) into Eq. (33) after first 
carrying out the integrations on the angle variables. The results of this 
calculation are shown in Fig. 2. It should be noted that the range of negative 
temperatures is such that A > - 1. 

Having obtained the relationship between energy and temperature, we 
can determine the entropy from Eq. (27), using Eq. (33), in the form 

P 

S/kN = j 8~A(~7) dE + l~ L ~ (42) 

However, it may be shown that the classical definition of entropy, ~3~ 

S/kN = S()0 + In L 2 + const (43) 

= - f  ffl(Q In Pl(~) 2m 7 d~ (44) 

is equivalent to Eq. (42) and the latter quantity can be more easily computed. 
The results of this calculation are shown in Fig. 3. 
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Fig. 2. D imens ion l e s s  reciprocal  t empera tu re  ,~ vs. energy.  
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Fig. 3. D imens ion le s s  en t ropy  vs. energy.  M a x i m u m  en t ropy  occurs  at an  energy where  
,~ in Fig. 2 is zero. 
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It should be noted here that Eq. (34) can also be derived from a vari- 
ational principle by maximizing the entropy, defined by Eq. (44), subject to 
the constraints that the energy (in the product form),f  r 2Pl(r) dr andf  Pl(r) dr 
be fixed. This was the method used by Joyce and Montgomery (18~ for a 
similar problem in a rectangular domain. It is felt that the present method is 
slightly superior since the variational derivation has undetermined Lagrange 
multipliers, which have to be identified in terms of T and L 2 by some other 
argument. More importantly, the closure method allows the error involved 
to be examined by investigating higher order distribution functions. 

There are analytical landmarks that can be identified in Figs. 2 and 3. 
When 3, = 0, P~ is given by Eq. (35) and E(),) and S(A) can be computed, 
giving 

/~(0) = (1/8rr)( 7 - I n  2) = -0.00461, 

S(0) = 1 + ln~r = 2.1447 

~, = 0.577 
(45) 

The former number is the value of the energy where the temperature changes 
signs, the latter the maximum value of the entropy. 

Similarly, as ,~ -+ oe the solution is given by Eq. (39) and 

/~()t = oo) = -(1/16rr)(2 In 2 - 1) = -0.00769 

~(), = oo) = In 2~ = 1.8379 
(46) 

This energy is the lowest value that occurs and S is the corresponding 
entropy. 

As ;~ -+ - 1 the solution is given by Eq. (40). By substituting this into the 
integrals for s and S and using Eq. (41), the following asymptotic formulas 
can be derived: 

,~ = - 1  + exp[-1.5772 - 8 ~ r / ~ -  exp(1 + 87r/~)] 

g =  1 + l n ~ -  8 ~ '  
(47) 

The latter result is shown as a straight line on Fig. 3. The former shows how 
- A tends to unity as ~ ~ oe. It is apparently~valid only for larger values of 
L e than those on Fig. 2 since the decay to minus one is extremely rapid. This 
tendency for the temperature to approach a constant, negative value as 
energy tends to infinity is also a feature of the work of other authors/19,2~ 

3. N U M E R I C A L  S I M U L A T I O N  OF V O R T E X  M O T I O N  

In Section 2 considerable space is devoted to developing approximations 
to the theoretical equilibrium distribution of vortex clusters. The purpose of  
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the present section and the next is twofold, to verify the theoretical distribu- 
tion by numerical simulations and to show that starting from some other 
distribution of vortices, the system will tend to the equilibrium distribution 
with time. The latter is the more difficult since the approach to equilibrium is 
slow in some cases. 

Equation (1) may be written in a form more convenient for numerical 
purposes as 

"-~ = N J:~l,;, ,  (x~ + xj)  2 -+ -(-y, - yj)2 
(48) 

dy~ 21r ~-, x~ - x j  
= ~  A, ( x , - x 3 2 u  j = l , j ~ i  

2N equations for the N vortex coordinate pairs (x~, y~). In these equations all 
coordinates have been made dimensionless by scaling with the length L. 
The time variable in Eq. (48) is made dimensionless with the characteristic 
turnaround time 

T = (2r (49) 

which would be the circulation time for a fluid particle at distance L from 
the origin if all the vorticity were concentrated there. 

The initial-value problem for these equations has been solved by an 
eighth-order predictor-corrector method with a variable time increment, 
which ensures that the maximum error between the predicted and the cor- 
rected values lies between fixed bounds, usually 10- 8-10-10. The method used 
is a modification of one developed by Nordsieck. (34) 

The equations are integrated for various initial conditions in which the 
values of the constants of motion are either specified or computed. The initial 
values 

1 N 
- -  X i ,~=1 = o (50) 
N 

N y~ = o (51) 
i . = 1  

L (x, 2 + yfl) = 1 (52) 
N ,=~ 

are always imposed. The dimensionless Hamiltonian 

1 
E = 2~-N2 ~,~'jj~7"> ln[(x~ - xj) ~ + (y~ - yj)211/2 (53) 
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corresponds to the function E defined by Eq. (33) and is the parameter needed 
to compare with the theoretical equilibrium solutions. The error control is 
such that these four integrals of the motion retain their initial values rigor- 
ously to about seven significant figures for typical runs. 

The constancy of the integrals of motion is a necessary condition for 
accuracy but the only real measure is reversibility of the computation. That 
is, after a certain length of computation, one integrates backward in time to 
the initial time and compares the vortex positions with their initial positions. 
A modification of this procedure that shows both the nature of error growth 
and the reversibility of the computation is shown in Fig. 4. The computation 
is for 60 vortices with an energy level such that A ~_ 14 if it were an equilibrium 
state. (The energy level will often be given in terms of ~. To get the energy 
use Fig. 2.) Two simultaneous computations are carried out. The second 
differs from the first only in the initial position of one vortex, which has been 
displaced by 0.001 unit. The upper curve in the figure is the root mean square 
error divided by its initial value, 0.001. The lower curve is the corresponding 
maximum individual error in position over all of the vortices. The error 
grows exponentially at a remarkable rate, having grown by a factor of 1000 
in two time units (the turnaround time of a typical vortex is between one and 
two units). At this time both computations are reversed. The error in the 
reversed computation is shown by the dashed lines in the figure, which 
coincide with the solid lines until the computation is almost back to the 
initial time, when they begin to grow rapidly. The maximum error between 
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Fig. 4. Error growth analysis. 
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(a) 
LAMBDA=  - , ??4  T IME  1 '=  0 .000  

1 ,5  , , , , ,  . . . . .  , , ,  , ~ , ,  , ~ - - ~ - ~  

0 .0  

- t  . 5  

1 . 5  

0 . 0  

. " t ' '  - 

k:" 
I" 

o,o 1.5 -1.5 

A 

- 1 . 5  
- 1 . 5  0 .0  1 .5  

(b) ENSEMB[~ AVERAGE T = 0 . 0 0  

2 .5  , , , ~ - ~  , ' ~ , , , , r ~  ~- 

z.o 

1.5 

i 

1.0 ! ~ ! 

0.0 i - ,  
0.0 0.5 1.0 1.5 2.0 

R/l_ 

Fig. 5. Ensemble of four independent sets of 60 positive vortices in an infinite space 
with energy level specified by A = -0 .774.  (a) The stars in each quadrant  are the initial 
positions of the vortices in each of the four sets. The position of one vortex in each set 
is represented by the letter A. (b) A histogram of the ensemble average number  of 
vortices in annular  bands at the initial time compared with the predicted equilibrium 
vortex density (times radial coordinate). (c, d) Three turnaround time units after the 
start. (e, f) A total of  7.5 turnaround time units after the start. (g) Histogram of vortex 
positions for each member  of the ensemble at 7.5 t ime units. (h) Ensemble- and  time- 
averaged histogram from 6 to 7.5 time units. 
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Fig. 5. Continued. 
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the positions of the vortices after this cycle and their initial positions is less 
than 0.01. Therefore errors have been controlled in the computations to the 
extent that they are almost error-free for four time units. Similar computations 
for higher energy levels are usually a little worse than this because the vortices 
have to be started closer together to get the larger energy. 

A number of computations have been made with between 30 and 100 
vortices. The fluctuations were quite large even with 100 vortices, which was 
already time-consuming. It was found to be economical to do computations 
with 60 vortices, repeating the computations for four sets of initial conditions 
and then ensemble-averaging the results. Such a computation takes about 15 
min on NCAR's Control Data 7600. 

Results are shown in Fig. 5, for an energy level corresponding to 3, = 
-0.774.  The vortices (stars on these figures) were separated into two clusters 
initially. Each cluster was restricted to lie between two radii, 7/ = 0.55 and 

= 1.25. They were picked randomly in these annuli, and then squeezed 
between two rays to get the desired energy level. In the figure the configuration 
of  each of the four sets is shown for three times. At each time a figure with 
27r~Pl(~) calculated from the equilibrium distribution is shown. On this figure 
a histogram of the average (over the four sets) number of  vortices in each 
of  25 annular rings between ~ = 0 and ~7 = 2 divided by the width of the ring 
is shown. At the last time shown, four histograms indicate the fluctuations in 
the various members of the ensemble. Also, a histogram involving both 
ensemble-averaging and time-averaging over the previous 1.5 time units is 
performed in order to smooth out these fluctuations. The tendency toward the 
equilibrium distribution is evident. Similar results for other energy levels could 
also be shown. 

Two additional cases are shown in Figs. 6 and 7, which are at the same 
energy level as Fig. 5 but with three and four clusters, respectively. The three- 
cluster case appears to equilibrate; however, the four-cluster case appears not 
to do so. The computation in this case has been continued again as long 
without any apparent tendency to coalesce into a single vortex cluster. 

4. E Q U I L I B R A T I O N  OF D I S T A N T  C L U S T E R S  

In the last section the case of four tightly distributed clusters of vortices 
was found not to equilibrate during the relatively short time of the numerical 
integration. Similar situations have been found with two clusters and one 
would expect the same result with seven or fewer tight clusters of the same 
strength with centers equally spaced along a circle, since this is a configuration 
that has been found to be stable for point vortices. ~aS-3v) Reasoning will be 
given to support the ultimate equilibration of such configurations. 
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Fig. 6. Single set of 60 vortices in three-cluster initial configuration with energy Ievel 
specified by .~ = -0 .774  as in Fig. (5), at (a) 0, (b) 3, and (c) 7.5 time units. (d) A time- 
averaged histogram from 6 to 7.5 time units. 
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Fig. 6. Continued.  
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Fig.  7. S ame  as Fig.  6 wi th  four-c lus ter  initial conf igura t ion .  
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4.1. The M o t i o n  of  a Cluster of  Vort ices in a W e a k  
External Ve loc i ty  Field 

This problem will be sketched first. The application when the weak 
velocity field is produced by distant clusters will be discussed in a following 
subsection. The problem stated has general significance for two-dimensional 
turbulence since it describes the effect of "large eddies" on "small eddies." 
The method used below is a modification of Kubo's linear response 
theory, mS,am 

The equations of motion of N vortices in a given velocity field V(r, t) = 
-~ • V~(r, t) are 

pdr~ _~  • 8 ~  
dt = ~ + rV(r,,  t) (54) 

The Liouville equation, with the external field, is 

Define 

8t + p .= - z  • ~ + rV(r~, t) . - ~  = o (55) 

R = ( 1  __~1 r~ ) (56) 

(57) 

e = ( p ~ )  (58) 

These quantities are constants of the motion when V ~ O. Equations for their 
rate of change may be derived by multiplying the Liouville equation by 
appropriate functions and integrating over all r~. The Liouville equation will 
be solved by assuming 

PN = PN ~ + P J  (59) 

where Pr  o is the equilibrium solution evaluated at the current values of R, 
L 2, and E, and PN' is a small perturbation from equilibrium, which will be 
taken linear in V, neglecting quadratic and higher contributions. When PN 
is decomposed as in Eq. (59) the equation for L 2 may be written 

dt = ~r ~q~q~PN' dr1.., dr~ : DV(R,R t) (60) 
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with similar expressions for R and E. The quantity ~q, is defined by ~h = 
r, - R. A Taylor expansion of the external field in powers of this quantity 
has been performed keeping the lowest order nontrivial terms. The assump- 
tion is that the external field is slowly varying over distances of order L, the 
size of the cluster. The expansion would be exact if the velocity field were a 
linear function of position. 

Following Kubo, the equation for PN' may be solved formally by inte- 
grating along the characteristics of the unperturbed Liouville operator. 
Omitting the details, this solution may be used to evaluate the integral in 
Eq. (60), thus establishing the result 

where 

dL_...~ 2 = 8(1 + ) R(r, t) dr D~eD.B 
dt NL ~ 

I(OV. ~Va'~ 
= + ! 

(61) 

R('r' t) = ( (~=~ x'Y')t(,~=~ x'Y')t+~ ~ (62) 

is to be evaluated from the equilibrium ensemble using the values of the 
constants of integration at time t. In this expression x~, Yi are the coordinates 
of a vortex relative to the center of vorticity. 

The factor fo R(T, t) dr, being the integral of an autocorrelation func- 
tion, is equal to the corresponding energy spectrum at zero frequency, which 
is known to be always nonnegative(4~ therefore L 2 never decreases with time, 
regardless of the external velocity field. The quantity �88 dL2/dt can be regarded 
as an eddy viscosity coefficient. As such, Eq. (61) says that the large eddies, 
represented by the external velocity field, have the effect of a positive viscosity 
on the small eddies, represented by the cluster of vortices. Note, also, that 
while linear response theory has been used, this result is quadratic in the weak 
velocity field. 

Scaling all lengths with L and scaling the time with T = (2rrL)2/NF as 
in Section 3, we can write the normalized autocorrelation 

S(~) = R(~')/R(O), ~ = T/T 

fo ~ ff R(r) dr = R(O)T S(e) de 
(63) 

is the rate of strain tensor of the external velocity field evaluated at the center 
of the cluster and 
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where the zero-lag function R(0) appears to scale like 

R(O)/NL ~ = e(A) (64) 

In order to numerically evaluate the ensemble average the ergodic assump- 
tion (~~ will be made, replacing the ensemble average by a time average in one 
member of the ensemble in the form 

R(~-) = (1/to) g(t)g(t + -r) dt, g = ~ (x~YO (65) 

The function g is evaluated by integrating Eq. (48) as described in Section 3 
for a specified energy level with N = 40 and the computation is originally 
run for a long enough time that the system is near equilibrium. The lag 
function is computed with to on the order of 60 time units, a very long time. 
However, since the accuracy of the computation as measured by reversibility 
is only about four time units, one cannot expect good results for lags much 
greater than this. 

In Fig. 8, the normalized function S(e) is shown for A = 0.59, compared 
with a damped cosine, which it resembles closely. The positive correlations 
occur about every turnaround time. Similar results could be shown for two 
other values of A. Estimates of the value of fo  S(e) de have been obtained by 
integrating the damped cosine curve that best fits the first few cycles. These 

0.0 

- I .  0 ' ~ ' ' 

0 . 0  2.0 
I I ~ L I  

4.0 6.0 

Fig. 8. Normalized autocorrelation of ~= 1 X~Y~ vs. the lag time in turnaround time units. 
Experimental points are computed from the equilibrium configuration with the energy 
level specified by A = 0.59. Dotted line is an exponentially damped cosine, 
exp(-0.38t/T) cos(2.7t/T). 
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Table I 

14.5 0.023 0.25 
0.59 0.05 0.24 

-0.34 0.043 0.32 

results are shown in Table I. While the results are not very accurate, they 
seem to support e ~ 0.25, f~ S(§ d-~ ~ 0.04 for all h. 

4.2.  D i r e c t  S i m u l a t i o n  o f  V o r t i c e s  in an Ex te rna l  Fie ld 

A series of  simulations of  a cluster of  vortices in an external field has 
been performed using Eq. (54) with an external field given by 

= a(~x 2 + �89 (66) 

a combined plane strain and solid body rotation. The 3/2, 1/2 combination 
is what one gets locally due to a distant " p o i n t "  vortex cluster corotating 
with a cluster of  the same strength, as seen in a coordinate frame in which the 
latter' cluster is at rest. In this frame the " p o i n t "  cluster is at some negative 
value of x. 

A typical result is shown in Fig. 9 for 60 vortices, to ~ 14, with aTo = 
0.5, a value too large for the linear response theory to hold. Figure 9a shows 
the initial configuration of  the vortices, selected after a long run without the 
external field. Figure 9b is 0.83 time units later, when L = 1.27Lo. The 
noticeable skewing of the streamlines from a circular pattern to one stretched 
into the second and fourth quadrants is directly related to the growth of  the 
cluster. This may be seen by calculation of L 2 from Eq. (54), with Eq. (66), 

1 dL 2 2a 
d - - t - = - - ~  . ~  x,y~ (67) 

t = 1  

so that in order for L 2 to increase with time it is necessary that there be more 
vortices in the second and fourth quadrants than in the first and third. 

In Fig. 10, the result of  ensemble-averaging four runs with aTo = 0.23 
and A0 = 0.59 is shown. The initial conditions were taken at intervals from 
the long run from which the autocorrelation in Fig. 8 was computed. The 
oscillations of  L as it grows are related to the oscillations in this autocorrela- 
tion. Equation (61), which describes the rate of growth of L, involves a long- 
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Fig. 9. Sixty vortices in an external velocity field similar to that produced by a point 
vortex off to the left of the figure. (a) Initial configuration shown by stars and streamlines, 
with energy level given by A = 14.5. (b) Configuration 0.83 turnaround time units later, 
where L = 1.127Lo and the vortex distribution is skewed into the second and fourth 
quadrants.  
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1,0 
0.0 2.0 4.0 6.0 8.0 

t /To 

Fig. 10. Ensemble-average of four sets of 60 vortices in a weak external velocity field 
(aTo = 0.23), showing the cluster size L/Lo vs. dimensionless time. The solid line is 
calculated from the linear response theory result using the damped cosine shown in Fig. 8 
for the autocorrelation function. 

time limit on the right side which integrates the autocorrelation to infinity. A 
form that is correct for short times also may be written 

dt /T  = 16(1 + (68) 

The solid line in Fig. 10 is the result of  integrating Eq. (68) with S given by 
the damped cosine shown in Fig. 8. The agreement is not perfect, but has 
oscillations and the proper growth rate. 

4.3. Argument  for the Equilibration of Distant Clusters. 
Negative Viscosity 

Consider a number of  clusters of  vortices, which in lowest approximation 
interact as point vortices. Equation (61) shows that each cluster will grow in 
size. In the definition of the constant of  motion NL 2 = ~ r~ 2, the summation 
can be carried out over the vortices in each cluster, then over the clusters, 
giving 

~,  NI(Rx 2 + Lz 2) = const (69) 
I 
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where Rx is the center of t he / t h  cluster, and N~ is the number of vortices in 
the cluster. Since L12 grows with time, it follows that ~ NzR12 decreases; 
therefore the clusters draw together, which shows the beginning of a tendency 
to equilibrate. The quantity 

1 ~ dR12 (70) 
4--N N~ dt 

which can also be called an eddy viscosity, is negative. (41) 
The decrease in ~ NIRx 2 corresponds to an increase in the angular 

momentum of the system of "po in t "  clusters at the expense of the angular 
momentum of the internal structure of the clusters. This transport of momen- 
tum into the "zonal  winds" is what is required in the earth's atmosphere to 
balance frictional losses (25) in the prevailing westerly winds. It is interesting 
that this atmospheric transport is associated with tilting of the troughs and 
ridges toward the east with increasing latitude and with a corresponding 
skewing of cyclones, similar to that seen in Fig. 9. 

More specific results may be obtained for clusters of the same strength 
and size equally spaced around a circle by using Eq. (61) and the estimates 
from Table I. For two, three, or four clusters with N1 in each cluster, each a 
distance R from the origin, D~jD,j = (1/8, 2/9, 1/8)(N~P/27r)2(1/R4), respec- 
tively. When this is used in Eqs. (63) and (61), the result 

l dR 
R dt/T = -(0.10, 0.13, 0.05)(1 + A)(L/R) 4 

is obtained, where T = (2~cR)2/NF is the approximate time for a cluster to 
orbit around the origin. The simulations of Figs. 5-7 are for two, three, or 
four clusters, respectively. In Fig. 5, the initial value of L/R is about unity, 
which, while too large for the formula to be applicable, nevertheless gives an 
equilibration time of several turnaround times. In Fig. 6, the initial value of 
L/R is about 0.5, which gives 

l dR 
- ~  ~ - i 0  -~ 
R dt/T 

taking h = 0, for lack of a better value. This means that the initial rate of 
decrease of R is such that R should decrease by about 370 in three turnaround 
times, a rate close to that observed. In Fig. 7, however, the initial value of 
L/R is only about 0.2 and the formula gives 

1 dR 
_ _ _  ~ - 1 0 - 4  

R dt/T 

a rate only 1/100 of the previous case, or about 3~ in 300 turnaround times. 
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This is too small to be observed during the time of the computation. The 
conclusion to be drawn is that the apparent failure to equilibrate in the 
simulation shown in Fig. 7 is consistent with the slow rate of equilibration 
predicted 

Roberts and Christiansen (a) report clusters of vortices that fail to coalesce 
when the separation between the clusters is greater than a critical value. 
While the theory developed above, which appears to be in conflict with this, 
does not strictly apply, since Roberts and Christiansen's vortices are in a box, 
not in infinite space, and consequently ~ r~ 2 is not a constant of motion, it is 
possible, nevertheless, that the clusters would ultimately coalesce. There is a 
more important point to consider: Their "clusters of vortices" are really 
regions of uniform vorticity, which are described numerically by uniform 
distributions of vortices. Because of incompressibility, such regions of uniform 
vorticity cannot grow in size, though the simulating system of vortices can. 
This suggests that some caution should be exercised in interpreting numerical 
experiments where continuous distributions of vorticity have been replaced 
by discrete ones. 

5. C O N C L U S I O N  

It is concluded that a cluster of vortices in an infinite space will tend to 
arrange itself in the axially symmetric configuration predicted from the 
microcanonical ensemble. The structure of the configuration depends on a 
parameter that was identified as the temperature. The fact that this tempera- 
ture can be negative when the energy is greater than a critical value plays no 
essential role in the analysis and it could be considered to be merely a function 
of energy defined by Eq. (9). 

There is no thermodynamic scaling in the problem treated here. The 
energy scales with N ~, the temperature scales with N. 

A difficulty in the numerical experiments was the apparent failure of  
distant clusters to coalesce into a single equilibrium cluster. It was shown in 
Section 4, by using linear response theory, that a very stow rate of equilibra- 
tion is to be expected in this case. This result, expressed by Eq. (61), is the 
most important result in this paper. It shows that a cluster of vortices in a 
weak external velocity field will grow in size due to the influence of the 
external field, a nonequilibrium result. The significance is that the large 
eddies in a two-dimensional vortex flow have the effect of a positive eddy 
viscosity on the small eddies. A consequence of this result is that in a system 
made up of a large number of weakly interacting clusters the individual 
clusters will grow in size while the centers of vorticity of the clusters tend to 
collapse together. The latter effect is in the nature of a global negative eddy 
viscosity. 
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